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Abstract
Background Early identification of Schizophrenia Spectrum Disorder (SSD) is crucial for effective intervention and 
prognosis improvement. Previous neuroimaging-based classifications have primarily focused on chronic, medicated 
SSD cohorts. However, the question remains whether brain metrics identified in these populations can serve as trait 
biomarkers for early-stage SSD. This study investigates whether functional connectivity features identified in chronic, 
medicated SSD patients could be generalized to early-stage SSD.

Methods Data were collected from 502 SSD patients and 575 healthy controls (HCs) across four medical institutions. 
Resting-state functional connectivity (FC) features were used to train a Support Vector Machine (SVM) classifier 
on individuals with medicated chronic SSD and HCs from three sites. The remaining site, comprising both chronic 
medicated and first-episode unmedicated SSD patients, was used for independent validation. A univariable analysis 
examined the association between medication dosage or illness duration and FC.

Results The classifier achieved 69% accuracy (p = 0.002), 63% sensitivity, 75% specificity, 0.75 area under the receiver 
operating characteristic curve, 69% F1-score, 72% positive predictive rate, and 67% negative predictive rate, when 
tested on an independent dataset. Subgroup analysis showed 71% sensitivity (p = 0.04) for chronic medicated SSD, 
but poor generalization to first-episode unmedicated SSD (sensitivity = 48%, p = 0.44). Univariable analysis revealed a 
significant association between FC and medication usage, but not disease duration.
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Introduction
Evidences from studies and clinical experiences has 
demonstrated that signs and symptoms of psychiatric 
disorders do not map well to their neurobiological abnor-
malities [1, 2]. This was largely due to the heterogeneities 
within psychiatric disorders, as the variability within dis-
orders exceeds the variability between disorders, making 
it problematic to treat them as a single entity when inves-
tigating their neurobiological substrates. Schizophrenia 
spectrum disorders (SSD) are a range of disorders with 
the same symptoms as schizophrenia. Currently, the 
diagnosis, subtyping, prognosis, and treatment selection 
for SSD rely primarily on signs and symptoms, as there 
are no biomarkers to assist in clinical decision-making. It 
is urgent to build and validate an objective biomarker for 
the early diagnosis of SSD.

In recent years, there has been growing interest in uti-
lizing neuroimaging combined with machine learning for 
diagnosing SSD [3–13]. Previous studies using support 
vector machine (SVM) and other machine learning meth-
ods found that unimodal or multimodal MR imaging 
could achieve 72-80% accuracy to differentiate those with 
SSD from healthy controls (HCs) [14–18]. For example, 
a recent study reported promising results that function 
and connectivity of the striatum may be a potential trait 
marker for schizophrenia using a functional MR imaging 
dataset from seven independent centers [19]. A “trait bio-
marker” refers to the brain signs that are not state depen-
dent. On the other hand, another previous study [20] 
found that structural neuroimaging had not diagnosed 
first-episode psychosis using 5 independent datasets.

Most studies target chronic, medicated patients. Can 
these models also apply to early-stage cases, or only to 
chronic, medicated SSD? Identifying a trait biomarker for 
early-stage psychiatric patients is vital for timely diagno-
sis and intervention, especially when the optimal treat-
ment plan remains uncertain. Early identification of the 
disease could enable timely interventions that may pre-
vent future deterioration [21, 22].

To the best of our knowledge, there is limited research 
directly addressing this specific question: whether FC 
features identified in chronic, medicated SSD represent 
true trait biomarkers that can be generalized to early-
stage patients rather than state-dependent characteris-
tics. We chose to focus on FC because it has been widely 
recognized in many studies as a robust and reliable bio-
marker for SSD [23]. Among several machine learning 

methods, the SVM is widely used, well established, and 
comparable across many studies in classifying schizo-
phrenia patients [9, 14, 24, 25]. To maintain consistency 
with previous schizophrenia classification studies and 
facilitate direct comparison, we utilized SVM, which has 
been widely used for discriminating psychopathological 
subtypes of schizophrenia based on brain functional con-
nectivity (FC) patterns [26].

In the present study, the participants included both 
chronic medicated and first-episode unmedicated 
patients. This diverse sample allows us to assess the 
model performance across patient groups, offering 
insights into the generalizability of machine learning for 
schizophrenia classification. Here, we included 4 centers, 
and trained SVM model using data from 3 centers and 
tested the model in another center. We aimed to investi-
gate whether FC features identified in chronic, medicated 
SSD could be generalized to early-stage SSD patients, 
testing if these features represent true trait biomarkers of 
the disorder rather than state-dependent characteristics. 
To capture FC abnormalities, we computed connectivity 
between all pairs of regions across the entire brain. This 
whole-brain approach was chosen because SSD-related 
dysfunction affects multiple brain areas, allowing us to 
identify potential connectivity biomarkers.

Materials and methods
Participants
We recruited participants from four distinct datasets, 
which altogether comprised a total of 1077 individuals, 
including 502 patients diagnosed with Schizophrenia 
Spectrum Disorders (SSD) and 575 Healthy Controls 
(HCs). Dataset CMU (the First Affiliated Hospital of 
China Medical University) is unique as it was used for 
independent testing of the model and includes 275 SSD 
patients and 275 HCs from a certain center. The SSD 
patients in dataset CMU consist of 92 chronic medicated 
SSD, 74 first-episode medicated SSD, and 44 first-epi-
sode unmedicated SSD. Dataset PKU (Peking Univer-
sity Sixth Hospital), COBRE (Center for Biomedical 
Research Excellence) and UCLA (University of Califor-
nia, Los Angeles) were used for training the SVM clas-
sifier and include a total of 227 chronic and medicated 
SSD patients and 300 HCs from different centers. The 
first-episode SSD was defined as patients who were expe-
riencing their first psychotic episode with illness duration 
less than 12 months. All participants provided written 

Conclusions Classifiers developed on chronic medicated SSD may predominantly capture state features of chronicity 
and medication, overshadowing potential SSD traits. This partially explains the current classifiers’ non-generalizability 
across SSD patients with different clinical states, underscoring the need for models that can enhance the early 
detection of schizophrenia neural pathology.
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informed consent in accordance with the procedures 
approved by the ethics committees or institutional review 
boards of the China Medical University, the Sixth Hospi-
tal of Peking University, the University of New Mexico, 
and the University of California Los Angeles Institutional 
Review Board. Clinical trial number: not applicable. The 
demographic and clinical characteristics of the partici-
pants are presented in Table 1. For further details regard-
ing the four datasets, please refer to the Supplementary 
Materials.

Age, sex and head motion between those with SSD 
and the HCs in the training datasets (PKU, COBRE, and 
UCLA) and test dataset (CMU) are shown in Supplemen-
tary Materials Figure S2.

Image acquisition and fMRI data processing
All participants underwent scanning for 5–8  min using 
3.0 Tesla MRI equipment. Previous studies demonstrated 
that the FC parameters derived from RS stabilized with 
acquisition times as brief as 5 min which is sufficient for 
reliable estimates of correlation strengths [27]. The gain 
of additional scanning time in the increase of reliability 
and the decrease of spurious correlations between net-
works approaches asymptotic levels within 5–6 min [27]. 
Similarly, ~ 5½ min acquisition duration has been found 
to be adequate for a stable spatial estimation of brain net-
works in pediatric populations [28]. The detailed imaging 
acquisition protocols for the four datasets are provided in 
the Supplementary Materials.

All images were preprocessed using SPM12 (www.
fil.ion.ucl.ac.uk/spm/) and Data Processing & Analy-
sis of Brain Imaging (DPABI) [29]. The volumes from 
the first 10 time points were discarded to allow the sig-
nal to reach equilibrium. Slice-timing correction and 
realignment were applied to the remaining volumes. 
Functional images were spatially normalized to the Mon-
treal Neurologic Institute (MNI) space and resampled to 
3 × 3 × 3mm3. Spatial smoothing (Gaussian kernel with 
a 4-mm full width at half-maximum) was not applied 
to avoid introducing artificial local spatial correlations 
between voxels [30]. Additionally, since the data were 
analyzed by parcels, smoothing could lead to signal 
overlap between different parcels. Linear trends were 
removed from the time courses. Temporal bandpass fil-
tering (0.01–0.1 Hz) was performed. Finally, confounding 
covariates, including the Friston-24 head motion param-
eters and white matter, cerebrospinal fluid, and global 
signals, were regressed out [31]. The above steps were 
consistent with previous studies [19, 32–34]. As par-
ticipants with a high head motion can introduce biases 
to FC calculation and hence the subsequent machine 
learning modeling, we excluded subjects with head 
motion (FD) greater than 0.3 according to previous stud-
ies (the remaining subjects in dataset CMU = 536 [total 
SSD = 268, chronic medicated SSD = 88, first-episode 
medicated SSD = 73, first-episode unmedicated SSD = 43, 
HC = 268], dataset PKU = 199 [SSD = 99, HC = 100]], data-
set COBRE = 77 [SSD = 27, HC = 50], dataset UCLA = 143 
[SSD = 34, HC = 109]).

Table 1 Demographics and clinical features of participants
Site Group N Age (y) Male/

Female
BPRS Positive Negative General Illness Duration (months)

Dataset CMU Patient 275 25.0 ±
9.8

109/
166

31.8 ±
12.4

N/A N/A N/A 32.9 ±
50.9
(n = 244)

Control 275 25.3 ±
6.5

113/
162

18.6 ±
1.9

N/A N/A N/A N/A

Patient (first-episode unmedicated) 44 24.0 ±
9.8

26/
18

41.2 ±
12.3

N/A N/A N/A 3.8 ±
4.1

Control (age- and sex-matched) 44 24.4 ±
7.4

28/
16

18.6 ±
1.3

N/A N/A N/A N/A

Dataset PKU Patient 106 27.1 ±
6.7

43/
63

N/A 25.8 ±
5.4

21.5 ±
6.9

37.7 ±
6.2

53.0 ±
52.9

Control 100 25.8 ±
5.4

47/
53

N/A N/A N/A N/A N/A

Dataset COBRE Patient 71 38.1 ± 14.0 57/
14

N/A N/A N/A N/A 192.5 ±
149.9
(n = 70)

Control 74 35.8 ± 11.6 51/
23

N/A N/A N/A N/A N/A

Dataset UCLA Patient 50 36.5 ±
8.9

38/
12

N/A N/A N/A N/A N/A

Control 126 31.1 ±
8.7

59/
67

N/A N/A N/A N/A N/A

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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The Brainnetome Atlas [35] was chosen because it is 
based on connectional architecture, aligning perfectly 
with our focus on functional connectivity features. The 
average time series of 246 nodes within the atlas were 
extracted for each individual by averaging the whole time 
series throughout all voxels in each node. FC between 
each pair of nodes was calculated using Pearson’s corre-
lation analysis, producing (246 × 245)/2 = 30,135 unique 
FCs for each subject. Fisher r-to-z transformation was 
performed for all FCs. We inspected the average FC pat-
terns of the four centers and their correlations, ensuring 
that the data variance was acceptable (Figure S1). Fig-
ure 1 presents an overall flowchart of the study.

Classification to discriminate diagnostic groups and clinical 
subgroups
We pooled dataset PKU, dataset COBRE and dataset 
UCLA as the training data and used dataset CMU as the 
test data. The Fisher z-transformed FC measures were 
normalized by using the group mean and standard devia-
tion from the training dataset for both the training and 
test datasets. All analyses codes are available here:  h t t p 
s :   /  / g i t h u   b .  c o  m  / l i c  h a  o 3 1  2 2 1  4 1  2  9 /  S  S D _ c l a s s i fi  c a t i o n. The 
machine learning analyses were implemented by Scikit-
learn package [36] using Python language.

To mitigate the poor sample-to-feature ratio, princi-
pal component analysis (PCA) was used to reduce the 
dimensionality in feature space. The top principal com-
ponents with the highest eigenvalues that cumulatively 
explained 95% of the variance were selected (70%, 80% 
and 99% explained variance were also tried; please see 
Supplementary Materials Figure S3). Then, PCA scores 
on the selected principal components were fed into a 
linear SVM classifier (regularization parameter C = 1; 
logistic regression classifier was also tried, please see 
Supplementary Materials Figure S3) for training a classi-
fication model. Of note, we used svm. SVC with the set 
class_weight parameter to ‘balanced’, which automati-
cally adjusts weights inversely proportional to class fre-
quencies in the input data. This approach ensured that 
the class with fewer samples gets a higher weight, helping 
to address any class imbalance in our dataset. We used 
the trained model to classify the subjects in the test data-
set and evaluated the classification performance of the 
model. Furthermore, we investigated the classification 
performances of the trained model in individuals with 
chronic medicated SSD, first-episode medicated SSD 
and first-episode unmedicated SSD separately in dataset 
CMU.

Complementary machine learning setups
In order to facilitate comparison with previous stud-
ies, we also using three other machine learning strate-
gies which were commonly used in previous studies. 

The three other machine learning strategies were 5-fold 
cross-validation that pooled all datasets, leave-one-site-
out cross-validation, and 5-fold cross-validation that 
recruited only first-episode unmedicated SSD (within 
dataset CMU).

For each fold of the 5-fold cross-validation, we followed 
the same preprocessing and analysis steps as described 
above, including z-normalization, PCA for dimensional-
ity reduction, and classification using a linear SVM with 
the same parameters. We used the trained model to clas-
sify the unseen test data (1/5) and evaluated the classifi-
cation performance of the model. After a 5-fold training 
and testing loop, every participant had a predicted label 
and a real label. According to these labels, we further 
evaluated the classification performance of each sub-
group for datasets CMU and PKU, e.g., unmedicated SSD 
or unmedicated schizophreniform subgroups.

For each fold of the leave-one-site-out cross-validation, 
one dataset was used as the test data while the other three 
served as training data. The machine learning processes, 
including z-normalization, PCA for dimensionality 
reduction, and classification using a linear SVM (C = 1), 
were consistent with the approach used when pool-
ing all datasets. We used the trained model to classify 
the unseen dataset (1/4) and evaluated the classification 
performance of the model. After a 4 leave-one-site-out 
cross-validation loop, every participant had a predicted 
label and a real label. According to these labels, we fur-
ther evaluated the classification performance of each 
dataset.

For each fold of the 5-fold cross-validation that 
included only the first-episode unmedicated SSD in data-
set CMU, the machine learning processes were the same 
as that when pooling all datasets together. This subsam-
ple included 44 first-episode unmedicated SSDs and 44 
age- and sex-matched HCs (Table 1).

Next, we used a linear regression model to regress out 
the effect of site, age, sex and head motion for all subjects. 
Specifically, effects of site, age, sex, and head motion were 
adjusted by using a linear regression model fitted on the 
whole dataset prior to cross-validation procedure.

Furthermore, regressing out the effect of site, age, sex 
and head motion for all subjects together may introduce 
risk data leakage between the training dataset (datasets 
PKU, COBRE, and UCLA) and the test dataset (dataset 
CMU). Therefore, we additionally estimated the effect 
of age, sex and head motion in an analysis limited to the 
training dataset and then applied the estimated param-
eters (beta values) to all subjects. The results were shown 
in Figure S4.

Statistical analysis
Permutation testing has been used to statistically analyze 
the model’s classification performance [37]. Specifically, 

https://github.com/lichao312214129/SSD_classification
https://github.com/lichao312214129/SSD_classification
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we conducted 500 permutations of the training set labels 
while keeping the test set labels unchanged. For each per-
mutation, we followed the same cross-validation proce-
dure used in our original analysis to ensure consistency. 
This approach allows us to generate a null distribution of 

classification accuracies under the assumption of no true 
relationship between features and labels. The p-value was 
calculated as the proportion of permutation accuracies 
that were greater than or equal to our observed accuracy, 
plus one, divided by the total number of permutations 

Fig. 1 Flowchart of the study. SSD = schizophrenia spectrum disorder; HC = healthy control; PCA = principal component analysis; SVM = support vector 
machine
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plus one (p = (k + 1)/(500 + 1)), where k is the number of 
permutations with accuracy ≥ observed accuracy). This 
method effectively accounts for the non-independence 
of predictions in cross-validation schemes and provides a 
more accurate estimate of significance. These results were 
provided in Figure S9 and S10. The statistical significance 
level p < 0.05 was considered statistically significant.

Since there were very few of those with chronic 
unmedicated SSD in this study (9 individuals), the fol-
lowing strategies were used to investigate the effect of ill-
ness duration or medication history on FC. We tested the 
effect of medication on FC by comparing first-episode 
medicated SSD with first-episode unmedicated SSD to 
reduce confounding by illness duration using network-
based statistic (NBS) approach [38]. In addition, we 
tested the effect of illness duration by comparing chronic 

medicated SSD with first-episode medicated SSD to 
reduce confounding by medication.

We took age, sex, education level, framewise displace-
ment (FD) and illness duration as covariates to detect the 
effect of medication, while we took age, sex, education 
level and FD as covariates to detect the effect of illness 
duration. The NBS is a nonparametric statistical method 
to address the multiple comparisons problem on a graph 
and control the familywise error rate (FWER). We set the 
primary cluster-forming threshold to 3 (t statistics) and 
the corrected significance to 0.05 (two-tailed test) with 
1000 times permutation tests. Demographic and clinical 
information for the individuals with chronic SSD, first-
episode medicated SSD and first-episode unmedicated 
SSD are shown in Figure S5 (Supplementary Materials).

Results
Classification performances
The classification model trained using data from indi-
viduals with chronic SSD from three sites (datasets PKU, 
COBRE, and UCLA) classified those with SSD from the 
HCs in another site (dataset CMU) with 69% accuracy 
(p = 0.002), 63% sensitivity and 75% specificity (Fig.  2). 
Subgroup analysis indicated that this model identified 
chronic medicated SSD in dataset CMU with 71% sen-
sitivity (92 individuals with chronic medicated SSD; 
p = 0.04) but did not generalize to those with first-episode 
SSD, including first-episode unmedicated SSD (n = 44; 
sensitivity = 48%, p = 0.44) and first-episode medicated 
SSD (n = 74; sensitivity = 59%, p = 0.14).

In the main results, we used 12 months as the thresh-
old to define first-episode versus chronic SSD. In Fig. 3, 
we present the classification performance of the model 
trained using chronic schizophrenia spectrum disorder 
(SSD) from datasets PKU, COBRE, and UCLA to iden-
tify chronic medicated, first-episode medicated, and 
first-episode unmedicated SSD in dataset CMU, using 
different thresholds to define first-episode and chronic 
SSD. When a 24-month threshold was used to define 
first-episode and chronic SSD, the model exhibited a sen-
sitivity of 72% in identifying chronic medicated SSD indi-
viduals in dataset CMU, with a sample size (N) of 81 and 
a p-value of 0.03; it showed a sensitivity of 62% for first-
episode medicated SSD individuals, with a sample size 
of 81 and a p-value of 0.09; and a sensitivity of 49% for 
first-episode unmedicated SSD individuals, with a sample 
size of 47 and a p-value of 0.46. When the threshold was 
increased to 36 months, the model’s sensitivity in identi-
fying chronic medicated SSD individuals in dataset CMU 
rose to 74%, with a sample size of 65 and a p-value of 
0.02; the sensitivity for first-episode medicated SSD indi-
viduals was 61%, with a sample size of 88 and a p-value 
of 0.10; and the sensitivity for first-episode unmedicated 
SSD individuals remained at 49%, with a sample size of 

Fig. 2 Chronic SSD model testing on dataset CMU. SSD = schizophrenia 
spectrum disorder
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47 and a p-value of 0.43. These results indicate that the 
model can reliably distinguish between SSD patients and 
HCs based on varying time thresholds and medication 
status, with high statistical significance in some cases.

Additional analyses revealed that the classifica-
tion model trained on chronic SSD from datasets PKU, 
COBRE, and UCLA did not generalize to unmedicated 
SSD, including unmedicated schizophreniform and 
schizophrenia (SZ) (Supplementary Materials Figure S6).

For the 5-fold cross-validation that pooled all datasets, 
the classification model achieved 77% (± 1.7%, p = 0.002) 
accuracy, 74% (± 2.0%) sensitivity and 0.79 (± 2.9%) speci-
ficity. For the leave-one-site-out cross-validation, the 
classification model achieved 72% (± 2.5%, p = 0.002) 
accuracy, 72% (± 7.6%) sensitivity and 0.74 (± 4.4%) speci-
ficity. For the 5-fold cross-validation of first-episode 
unmedicated SSD, the classification model achieved 
71% (± 7.7%, p = 0.02) accuracy, 71% (± 9.8%) sensitivity 
and 0.73 (± 18%) specificity. The above performances are 
shown in Table 2.

Classification weights of FCs features
To enhance transparency in our classification models, 
we have visualized the feature weights of the FCs (Fig-
ure S8). Specifically, we displayed the feature weights 
(scaled to 0–1) of the linear SVM model fitted on Dataset 
PKU, COBRE, and UCLA (chronic SSD) and the feature 
weights (scaled to 0–1) of the linear SVM model fitted 
on first-episode unmedicated SSD patients. To illustrate 
the differences between the model trained on chronic 
patients and the model trained on early-stage patients, 
we presented the absolute difference between their fea-
ture weights (shown in the third panel of Figure S8).

Effect of illness duration or medication history on FC
We found that individuals with first-episode medicated 
SSD had different FCs than those with first-episode 
unmedicated SSD in a number of networks, e.g., the basal 
ganglia/striatum and the visual and frontoparietal con-
trol networks (Fig. 4). However, individuals with chronic 
medicated SSD had FC that was not significantly differ-
ent from those with first-episode medicated SSD.

Correction of site and covariates
After adjusting for site, age, sex, and head motion effects, 
the classification model demonstrated significantly bet-
ter performance than a random model. However, it was 
unable to accurately classify first-episode unmedicated 
SSD (as shown in Figure S4). Furthermore, a correction 
for site and covariates was applied in the 5-fold cross-val-
idation process that pooled all datasets and that includ-
ing those containing only first-episode unmedicated SSD 
(Supplementary materials, Figure S7).

Discussion
In this study, we used FC as a neuroimaging marker and 
linear SVM for classification to investigate if a model 
trained on chronic SSD patients could identify trait bio-
markers generalizable to early-stage SSD individuals, 
utilizing a large multicenter sample. We found that while 
the classification model trained on chronic medicated 
SSD from datasets PKU, COBRE, and UCLA, identi-
fied individuals with chronic medicated SSD in dataset 
CMU, it did not generalize to first-episode unmediated 
SSD. Univariable analysis indicated that medication 

Table 2 Model performance across different Cross-validation methods for SSD classification
Validation Method Sample 

Size
Accuracy Sensitivity Specificity AUC F1-score PPV NPV P-

val-
ue

5-fold (All datasets) 1077 77% (± 1.7%) 74% (± 2.0%) 79% (± 2.9%) 0.85 
(± 0.02)

77% (± 2%) 75% 
(± 2%)

78% 
(± 2%)

0.002

Leave-one-site-out 1077 72% (± 2.5%) 72% (± 7.6%) 74% (± 4.4%) 0.80
(± 0.03)

71% (± 2%) 66% 
(± 11%)

76% 
(± 7%)

0.002

5-fold (the first-episode 
unmedicated SSD vs. HCs)

88 71% (± 7.7%) 71% (± 9.8%) 73% (± 18%) 0.72
(± 0.16)

69%
(± 12%)

71%
(± 16%)

72%
(± 14%)

0.02

Fig. 3 Chronic SSD model testing on dataset CMU across thresholds. 
SSD = schizophrenia spectrum disorder
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usage significantly affected FC, whereas illness dura-
tion did not. Collectively, these findings suggest that the 
classification model trained using chronic medicated 
SSD may mainly identify the state of chronic medication 
usage rather than the trait biomarker of SSD. Given these 
findings, it may be beneficial to carefully reevaluate the 
clinical applicability of current machine learning studies 
involving chronic medicated SSD patients. Additionally, 
further consideration of how medication usage affects FC 
could provide valuable insights for future research.

The classification models trained on chronic SSD from 
datasets PKU, COBRE, and UCLA identified patients 
with chronic SSD in dataset CMU. These findings were 
consistent with previous studies that found that neuro-
imaging combined with machine learning can classify 
individuals with chronic medicated SSD [14, 16, 18, 25, 
39–42]. Additionally, FC combined with SVM effectively 
identified SSD individuals across the whole sample using 
three strategies: 5-fold cross-validation on all data, leave-
one-site-out cross-validation, and five-fold cross-valida-
tion limited to first-episode unmedicated SSD patients. 
These findings are also in line with previous studies that 
found that neuroimaging combined with machine learn-
ing can identify those with first-episode SSD [43] or first-
episode unmedicated SSD [15, 33, 44].

The classification model trained on chronic SSD from 
datasets PKU, COBRE, and UCLA did not generalize to 
the first-episode SSD in dataset CMU. Early and accurate 
identification of SSD could enable timely interventions, 
potentially preventing future deterioration [21, 22, 45]. 
If the classification model identified the trait biomarker 
of SSD, then we may expect it to diagnose SSD at the 
early stage. Unfortunately, our study found that the clas-
sification model trained using chronic SSD could not be 
generalized to first-episode SSD, especially first-episode 
unmedicated SSD. This finding supports and extends the 
idea of a previous study [20] that we should reconsider 
current evidence for the diagnostic value of machine 
learning and neuroimaging more cautiously. Beyond 
first-episode SSD, the classification model failed to gen-
eralized to unmedicated SZ, which typically have a lon-
ger illness duration (Supplementary Materials Figure S6; 
note that there was an overlap between unmedicated SZ 
and first-episode SSD). This finding further suggested 
that the failure of generalization cannot be solely attrib-
uted to the short illness duration of first-episode SSD in 
dataset CMU.

The relatively poor classification performance (sen-
sitivity = 48%) may be attributed to several key factors 
inherent to the early stage of the illness. The first-epi-
sode patients typically show more heterogeneous clinical 

Fig. 4 FC differences between medicated and unmedicated first-episode SSD. (A) Differences are displayed as t-statistic values for each connectivity. (B) 
Differences are displayed as average t-statistic values within and between networks. Amyg = amygdala; BG = basal ganglia; Tha = thalamus; Hipp = hip-
pocampus; SomMot = somatomotor; Control = frontoparietal control; Default = default mode; DorsAttn = dorsal attention; Sal/VentAttn = salience/ventral 
attention; SSD = schizophrenia spectrum disorder
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presentations and neurobiological patterns compared to 
chronic patients, making their brain connectivity pat-
terns more variable and harder to classify. Furthermore, 
the neurobiological changes in early-stage SSD represent 
a more dynamic and subtle phase of the illness, whereas 
chronic stages are characterized by more stable and pro-
nounced alterations due to disease progression and med-
ication effects. These fundamental differences between 
early and chronic stages of SSD reflect the natural course 
of the disease, where early stages exhibit greater variabil-
ity and subtlety in neural changes, while chronic stages 
show more established and consistent patterns of brain 
alterations.

We found that medication usage had a significant effect 
on FC, but disease duration had no significant effect 
on FC. This finding was an extension of and comple-
ment to a previous study [46]. The previous study com-
pared ultrahigh-risk subjects, first-episode SSD patients, 
chronic SSD patients and HCs, revealing distinct pat-
terns of functional dysconnectivity between first-episode 
and chronic SSD individuals. As an extension, our study 
suggests that the distinct patterns of dysconnectivity 
between first-episode and chronic SSD may be related to 
medication usage rather than illness duration. A recent 
study found that illness duration had no effect on any 
cognitive domain when completely controlling for medi-
cation by using never-medicated individuals on the SSD 
[47]. This finding partially supports the current finding. 
In addition, although we did not detect a significant effect 
of illness duration on FC, the classification model trained 
using chronic SSD could not be generalized to first-epi-
sode medicated SSD, which may suggest an interaction 
effect of medication usage and illness duration on FC.

Limitation
First, we used only FC as a feature to diagnose SSD, 
which may be a main concern. However, our machine 
learning pipeline using FC achieved good performance 
in identifying chronic SSD as well as good performance 
using other strategies to identify first-episode unmedi-
cated SSD compared to previous studies (Supplementary 
Materials Fig.  4). These findings suggest that the failed 
generalization to first-episode SSD was not due to the 
selection of features or machine learning methods. In 
addition, considering that a large number of published 
studies used functional metrics to classify individuals 
with chronic SSD, it is necessary to test the actual clini-
cal application value. Second, the ideal statistical method 
to test the effect of medication usage or/and illness dura-
tion on FC is the two-factor analysis of variance. How-
ever, since there were very few patients with chronic 
unmedicated SSD, we were unable to use this method 
in the two-factor analysis of variance. Third, different 
(unharmonized) scanners and acquisitions parameters 

may have affected the results. Fourth, the lack of medi-
cation and substance use information across our datas-
ets, which constraints the comparison with other studies 
and the control for potential confounding effects. Fifth, 
our study relied solely on functional connectivity met-
rics for classification. While functional connectivity is a 
well-established neuroimaging marker in SSD research, 
incorporating multiple brain metrics (such as structural 
connectivity, grey matter volume, or task-based activa-
tion patterns) could potentially provide complementary 
information and improve the classification performance. 
Future studies should consider integrating multiple neu-
roimaging modalities to develop more comprehensive 
and robust biomarkers for early-stage SSD.

Conclusion
In conclusion, we found that the classification model 
trained using chronic medicated SSD successfully identi-
fied chronic medicated SSD, but it did not generalize to 
first-episode SSD, especially unmedicated SSD. Univari-
able analysis showed that medication usage had a signifi-
cant effect on FC, but disease duration had no significant 
effect on FC. These findings suggest that the classification 
model trained using chronic medicated SSD may mainly 
identify the state of chronic medication usage rather than 
the trait biomarker of SSD. We should reconsider the 
current machine learning studies in chronic medicated 
SSD more cautiously in terms of the clinical application.
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