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Abstract 

Background Antidepressant efficacy is influenced by a multitude of factors, yet predicting treatment outcomes 
remains challenging. This difficulty is partly due to the commonly employed dichotomous classifications of treatment 
response that rely on a single primary endpoint.

Methods The study enrolled 972 patients diagnosed with depression, including both first-episode and recurrent 
cases. All patients received treatment with a single class of antidepressant medication over an eight-week period. 
Treatment response trajectories were identified through cluster analysis using normalized score change ratios 
from the 17-item Hamilton Rating Scale for Depression (HAMD-17) at baseline and weeks 2, 4, 6, and 8. The impact 
of psychosocial factors—including childhood trauma experience, social support, and family environment—on these 
response patterns was evaluated using ANOVA and Tukey’s HSD tests. Additionally, targeted exome sequencing 
was conducted to perform rare-variant burden and enrichment analyses to investigate genetic influences on antide-
pressant response.

Results Three patterns of antidepressant treatment response were identified: gradual response (C1 cluster), early 
response (C2 cluster), and fluctuating response (C3 cluster). Notably, patients in the C3 cluster exhibited higher 
levels of suicidal ideation, alexithymia, and anhedonia after the treatment period, along with the highest baseline 
levels of family control (a subscale of the family environment). Our rare-variant analysis revealed genes associated 
with response efficiency between C1 and C2 clusters to be significantly enriched in the neurotrophin signaling 
pathway (odds ratio = 23.94; p-adjusted = 6.96e-05). In addition, genes linked to response volatility between C1 and C3 
clusters were enriched in the regulation of inflammatory mediators of transient receptor potential (TRP) channels 
(odds ratio = 31.5; p-adjusted = 1.83e-07).
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Conclusions Our findings suggest that patients exhibiting a fluctuating response to antidepressant treatment 
may endure more severe clinical symptoms throughout the treatment course. The involvement of the neurotrophin 
signaling pathway and TRP channels in these response patterns highlights their potential as novel targets for thera-
peutic intervention in depression. This underscores the importance of personalized treatment strategies that consider 
the underlying genetic and psychological factors influencing antidepressant efficacy.

Keywords Antidepressant efficacy, Target exome sequencing, Rare variants, Response trajectories, Genetic factors, 
Psychosocial factors

Background
Major depressive disorder (MDD) is a prevalent men-
tal illness affecting over 300 million individuals world-
wide [1]. Although antidepressant medications are the 
primary treatment for MDD, the significant variability 
in treatment responses is a major challenge. Approxi-
mately 70% of patients do not respond to a single trial 
of antidepressants, and 20–30% remain unresponsive 
even after multiple interventions [2]. The prevailing’trial 
and error’strategy employed by clinicians to identify the 
most suitable treatment underscores the pressing neces-
sity for more precise and individualized therapeutic 
interventions.

Existing literature recognizes the involvement of psy-
chosocial, clinical, and genetic factors in influencing 
antidepressant efficacy [3]. Psychosocial factors as pre-
dictors of treatment response are frequently inconsist-
ent or insufficient for clinical application. For instance, 
while certain studies have demonstrated that higher 
levels of social support at baseline predict better anti-
depressant response, others have failed to establish a 
significant association between antidepressant response 
and social support [4, 5]. Additionally, specific adverse 
clinical symptoms, such as suicidal ideation, anhedonia, 
and alexithymia, have demonstrated correlations with the 
outcomes of antidepressant treatment [6–8].

Genetic variation is a promising predictor of anti-
depressant efficacy. Several genome-wide association 
studies (GWASs) focusing on common variants have 
been conducted. Nine of the published articles have 
revealed SNP signals associated with antidepressant 
efficacy of genome-wide significance [9–17]. Except for 
rs116692768, which was weakly replicated after adding 
the exome genotype to previously available genome-wide 
data, there were no consistent findings, even for biologi-
cal pathways [17]. Notably, the largest GWAS integrat-
ing genetic data from a substantial MDD patient cohort 
failed to identify significant variants associated with 
remission or percentage improvement [18]. Rare variants 
are of particular interest, as they may be directly associ-
ated with functional disruptions and have a higher like-
lihood of being causal compared to common variants 
[19]. Investigating rare variants could provide valuable 

insights into biological mechanisms that are less detect-
able through studies of common variants, thereby 
enhancing the clinical applicability of genetic findings in 
precision psychiatry. Limited studies have focused on the 
impact of rare variants on antidepressant efficacy. Kang 
and his colleagues found that genetic indicators for non-
remission in MDD patients were rare variants [20]. Two 
exome analyses of treatment-resistant depression (TRD) 
patients suggested some biological mechanisms associ-
ated with TRD [21, 22]. In addition, a small rare variant 
analysis identified 35 genes associated with antidepres-
sant response [23]. The absence of robust findings, cou-
pled with the limited number of studies conducted in 
this field underscores the need for a more comprehensive 
investigation.

Emerging evidence also suggests that immune and 
inflammatory processes play a significant role in the 
pathophysiology of depression and treatment response 
[24]. Elevated levels of pro-inflammatory cytokines, such 
as interleukin-6 (IL-6) and tumor necrosis factor-alpha 
(TNF-α), have been associated with poor response to 
conventional antidepressants [25]. A subset of depressed 
patients demonstrates heightened inflammatory acti-
vation, which may contribute to resistance to standard 
treatment approaches [26].

The poor achievement in predicting antidepressant 
efficacy may be attributed to the inappropriate classifica-
tion of outcomes. In MDD trials, results are often defined 
using a predetermined cutoff score measured at a sin-
gle primary endpoint [27]. The definition ignores rich 
information in the process of symptom change over time 
and reduces the potential statistical power of measure-
ments at multiple time points [28]. Identifying distinct 
trajectories of symptom change can provide a founda-
tion for improving the design of antidepressant clinical 
trials [29]. We attempted to use the change rate of the 
HAMD-17 scores to directly reflect the individual treat-
ment response to explore alternative categorization of 
outcomes [30].

In this study, we examined the patterns of treatment 
response in MDD patients using multi-point longitudi-
nal data. We focused on the role of rare variants in anti-
depressant efficacy by targeted exome sequencing. In 
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addition, we also examined differences in psychosocial 
factors and symptom characteristics between different 
patterns.

Methods
Study design overview
The overall study design flow is demonstrated in Fig.  1. 
This study of antidepressant efficacy was carried out in 
a  naturalistic clinical setting. It predominantly involved 
untreated adult inpatients having current episodes of 
nonpsychotic unipolar depression.

Participants
This study was conducted from 2010. Participants 
enrolled in this study were Chinese Han patients 
recruited from the Zhongda Hospital MDD inpatient 
database. Patients were diagnosed by two independent 
senior psychiatrists, and if diagnoses differed, the final 
diagnosis was confirmed by a third psychiatrist who was 
blinded to previous evaluations. Clinical assessments, 
including psychiatric evaluations, administration of the 
HAMD-17, and psychosocial scales, were conducted by 
trained psychiatrists at Zhongda Hospital. The exclu-
sion criteria included other documented diagnostic his-
tory on Axis 1 of the DSM-IV, independent diagnosis of 
intellectual disability, pregnancy, lactation, personality 

disorder, primary organic disease(e.g., major neurocog-
nitive disorders such as Alzheimer’s disease, severe trau-
matic brain injury, epilepsy, multiple sclerosis, or other 
progressive neurological diseases), and other medical 
conditions that might significantly impair psychiatric 
assessment or confound the diagnosis of MDD. Addition-
ally, a history of electroconvulsive therapy within the last 
six months, contraindication to repetitive transcranial 
magnetic stimulation (rTMS), and experiencing a manic 
episode within 12 months post-entry led to exclusion. 
The study was approved by the hospital ethical commit-
tee (2016ZDSYLL100-P01), and all participants signed 
written informed consent. In total, 972 MDD patients 
remained for the downstream analysis.

Antidepressant treatment
All MDD patients received treatment with a single anti-
depressant medication initiated at the minimum effec-
tive doses recommended by standard clinical guidelines. 
Among these patients, 61.2% received selective sero-
tonin reuptake inhibitors (SSRIs), 31.3% serotonin and 
noradrenaline reuptake inhibitors (SNRIs), and 7.5% 
other types of antidepressants. Dosages were adjusted as 
clinically indicated based on patient response and toler-
ability throughout the eight-week treatment period. A 
subset of patients also received concurrent repetitive 

Fig. 1 Study design flow chart. HAMD-17, 17-item Hamilton depression rating scale; CTQ-SF, childhood trauma questionnaire-short form; FES-CV, 
family environment scale-Chinese version; SSRS, social support rating scale; BSI-CV, Beck scale for suicide ideation-Chinese version; SHAPS: 
Snaith-Hamilton pleasure scale; TAS-20: 20-item Toronto alexithymia scale; ANOVA, Analysis of Variance; Tukey HSD, Tukey honestly significant 
difference
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transcranial magnetic stimulation (rTMS) during the first 
two weeks (14 consecutive days). Concomitant psycho-
tropic medications were prohibited except for low-dose 
benzodiazepine anxiolytics (e.g., alprazolam 0.4–0.8 mg/
day or estazolam 1–2 mg/day) for insomnia when clini-
cally necessary. Patients who altered their antidepressant 
medication or demonstrated significant non-compliance 
were excluded from the study.

Assessment of treatment outcome, psychosocial factors, 
and clinical symptoms
The severity of depressive symptoms was measured by 
the HAMD-17 at baseline and at scheduled follow-up 
time points at weeks 2, 4, 6, and 8. We evaluated several 
psychosocial factors that might have influenced the treat-
ment response at baseline, including childhood trauma 
experience, family environment, and social support. 
Childhood trauma was measured using the Childhood 
Trauma Questionnaire-Short Form (CTQ-SF), which 
covered five areas: sexual abuse, physical abuse, physical 
neglect, emotional abuse, and emotional neglect [31, 32]. 
We used all the ten dimensions of family environment in 
the family environment scale-Chinese version (FES-CV), 
including cohesion, expressiveness, conflict, independ-
ence, achievement orientation, intellectual cultural ori-
entation, active recreational orientation, moral-religious 
emphasis, organization, and controls [33, 34]. Social sup-
port was analyzed through the Social Support Rating 
Scale (SSRS), which encompassed objective and subjec-
tive support scores, utility of support, and a total social 
support score [35, 36].

We also evaluated several clinical symptoms, including 
suicidal ideation, alexithymia, and anhedonia at baseline 
and week 8 post-treatment. Suicidal ideation was meas-
ured using the Beck scale for suicide ideation-Chinese 
version (BSI-CV), where higher scores represented more 
severe ideation [37, 38]. Alexithymia, defined by impair-
ments in understanding and managing emotions [39], 
was measured using the 20-item Toronto Alexithymia 
Scale (TAS-20). The scale’s total scores ranged from 20 
to 100, where higher values signify more severe alexithy-
mia [40, 41]. Anhedonia was evaluated using the Snaith-
Hamilton pleasure scale (SHAPS). It comprised 14 items 
rated on a 4-point Likert scale, with higher scores reflect-
ing higher levels of anhedonia [42, 43].

Targeted exome sequencing
To study the rare variants associated with antidepres-
sant response, we conducted targeted exome sequencing 
for 1309 genes (Supplementary Table  S1). The targeted 
genes were chosen based on pathways reported to be 
associated with MDD and/or with regulating antidepres-
sant efficacy. They were sequenced using the Illumina 

MiSeq high-throughput sequencing platform (Illumina, 
San Diego, CA, USA). The data were processed with Illu-
mina’s Bcl2fastqv2.16.0.10 software for demultiplexing 
into individual Fastq files, followed by quality trimming 
of low-quality reads and bases (Q < 15) using the FastX 
tool. High-quality reads were aligned to the NCBI human 
reference genome (hg19) using Burrows-Wheeler Aligner 
(BWA). Post-alignment processing included duplicate 
marking with Picard’s MarkDuplicates, and realignment 
and recalibration of base quality scores using SAMtools 
and GATK. To identify single nucleotide variants (SNVs), 
criteria of minimal depth coverage > 20 × and a qual-
ity score > 30 in over 80% of sequenced subjects were 
applied. SNVs with a minor allele frequency (MAF) of 
< 1% were considered rare variants. After thorough in-
house quality control of clinical and sequencing data, 
56,552 rare SNVs within the 1,309 targeted genes were 
successfully annotated.

Statistical analysis
Treatment outcomes evaluation
To assess treatment outcomes, we employed two 
approaches utilizing multi-time point longitudinal data 
measured by HAMD-17. Initially, we adhered to tradi-
tional measures of antidepressant efficacy. Initially, we 
adhered to traditional definitions of antidepressant effi-
cacy, categorizing outcomes at each assessment time 
point (weeks 2, 4, 6, and 8 post-treatment) into remis-
sion (HAMD-17 score < 7) and non-remission (HAMD-
17 score ≥ 7), as well as response (≥ 50% reduction in 
HAMD-17 score from baseline) and non-response (< 
50% reduction from baseline). To enrich our analysis 
with temporal data, we constructed decision trees to 
classify patients based on their ability to maintain remis-
sion or response across four time points. To enrich our 
analysis with longitudinal response patterns, we con-
structed decision trees to classify patients according to 
their ability to maintain treatment efficacy across the 
entire follow-up period (weeks 2, 4, 6, and 8). Specifi-
cally, patients were categorized as follows: Stable remis-
sion (maintained HAMD-17 scores consistently below 7 
across all subsequent time points); Unstable remission 
(achieved remission at one time point but failed to con-
sistently maintain remission); Consistently not-remitted 
(never achieved remission at any assessed time points); 
Stable response (maintained response consistently after 
initial achievement); Unstable response (or fluctuating 
response) (achieved response at one time point but failed 
to consistently maintain response); Consistently non-
responsive (never achieved response criteria throughout 
the entire assessment period). Furthermore, we imple-
mented a time course analysis using the “timeclust” func-
tion from the TCseq R package (TCseq: Time course 
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sequencing data analysis. R package version 1.20.0), 
which was designed for the analysis of longitudinal data, 
and offered advanced tools for differential analysis across 
various time points as well as for the identification and 
visualization of temporal patterns in complex data sets 
[44]. We calculated the change ratio of HAMD-17 scores 
at weeks 2, 4, 6, and 8 by subtracting the score at each 
time point from the baseline score, then dividing by the 
baseline score. These change ratios, normalized to fit a 
normal distribution, served as inputs for the “timeclust” 
function. For the timeclust function, we utilized the 
default parameters, which included the k-means cluster-
ing method with a maximum of 10 random starts and a 
limit of 100 iterations for convergence. To control for the 
potential confounding effects of concurrent rTMS treat-
ment, we performed a separate analysis excluding these 
patients, ensuring a more accurate assessment of antide-
pressant response trajectories.

Psychosocial factors and clinical symptoms comparison 
among the clusters
To examine the influence of Psychosocial factors on 
treatment clusters and explore variations in clinical 
symptoms among them, we utilized Analysis of Variance 
(ANOVA) to identify group differences. For analyses with 
significant ANOVA results (p < 0.05), we applied a False 
Discovery Rate (FDR) correction to account for multiple 
testing and control the false positive rate. Post hoc pair-
wise comparisons were subsequently conducted using 
Tukey’s Honestly Significant Difference (HSD) test only 
for variables that remained significant after FDR correc-
tion (adjusted p < 0.05). To evaluate symptom improve-
ment following treatment, we calculated change scores 
by subtracting baseline scores from those at week 8.

Rare‑variants burden analysis and pathway enrichment 
analysis
To identify the genes that show different rare variants 
burden among different response clusters, rare-variants 
burden analysis was conducted using rare variant test 
software for next-generation sequencing data (Rvtests). 
Rvtests was developed as a comprehensive tool to sup-
port genetic association analysis and meta-analysis [45]. 
We applied the combined multivariate and collapsing 
(CMC) method within Rvtests to conduct association 
tests for rare variants [46]. The CMC method is a type 
of direct burden test that collapses variants into a single 
score. Our assumption is that most rare variants in the 
target regions contribute to the phenotype in a consist-
ent direction. While methods like SKAT allow for varied 
effect directions, CMC provides greater power under the 
expectation of a high proportion of uniformly causal vari-
ants, making it more suitable for our analysis framework. 

Prior to analysis, covariates such as sex, age, and genetic 
principal components were adjusted to reduce con-
founding influences. We used genes as the unit to group 
variants based on the annotation of the human genome 
version 19. Different burden analyses for different groups 
of clusters were calculated for each tested gene. The FDR 
approach was applied to correct for multiple compari-
sons and consider the genes with FDR < 0.05 as response-
associated genes. If there are no genes that survive the 
multiple testing, we also consider genes with p-value 
< 0.05.

For the response-associated genes, we then performed 
enrichment analysis using Enrichr to get the functional 
pathway based on annotated gene sets representing prior 
biological knowledge. The analysis employed the default 
settings provided by the platform, using a p-value cut-
off of 0.05 for statistical significance and applying the 
Benjamini–Hochberg method for multiple testing cor-
rection. To capture a wide range of biological pathways, 
we utilized extensive gene set libraries available in Enri-
chr, including KEGG, Reactome, and others. Using the 
response-associated genes as an input set and the tested 
genes as a background, we checked whether response-
associated genes significantly overlapped with annotated 
gene sets.

Results
Classification of antidepressant treatment outcomes: 
traditional definitions
During the eight-week follow-up period, 27 patients were 
lost to follow-up due to inability to contact or refusal to 
participate in follow-up visits, resulting in incomplete 
HAMD-17 data at the endpoint. We conducted a com-
parative analysis that included demographic variables 
(gender, age, educational level) and baseline HAMD-17 
scores. There were no significant differences between the 
two groups in gender, age, or educational level (p > 0.05). 
However, patients who dropped out had significantly 
higher baseline HAMD-17 scores than those who com-
pleted the study (p = 0.00046) (Supplementary Table S2).

Using decision-tree analysis based on longitudinal 
HAMD-17 scores, we identified distinct groups of antide-
pressant treatment outcomes. Regarding remission, 269 
patients showed consistent non-remission, never meeting 
remission criteria throughout the follow-up period; 609 
patients achieved sustained remission, reaching remis-
sion criteria at a certain point and maintaining it until 
week 8; and 94 patients exhibited non-sustained remis-
sion, initially achieving remission but failing to maintain 
it until week 8 (Supplementary Fig S1). Similarly, in terms 
of treatment response, 44 patients demonstrated consist-
ent non-response, never reaching the ≥ 50% improve-
ment threshold; 859 patients showed sustained response, 
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achieving and maintaining ≥ 50% improvement until 
week 8; and 69 patients showed non-sustained response, 
initially meeting response criteria but failing to sustain it 
until the end of week 8 (Supplementary Fig S2). Notably, 
294 of the 972 patients fell into different classifications 
depending on whether remission or response criteria 
were applied. Specifically, 187 patients met response cri-
teria (≥ 50% improvement) without ever reaching remis-
sion (HAMD-17 < 7), primarily because individuals with 
high baseline severity could demonstrate substantial 

improvement but still fail to meet absolute remission 
criteria. Conversely, patients with lower baseline sever-
ity might achieve remission even if their overall percent-
age improvement was relatively modest (Fig.  2A). This 
discrepancy underscores the limitations of using either 
remission or response criteria in isolation, as they may 
not fully capture the complexity of individual treatment 
trajectories. To further illustrate this issue, representative 
HAMD-17 trajectories from individual patients across 
different categories are shown in Fig. 2B, demonstrating 

Fig. 2 A: Assignment of patients based on classifications for both response and remission derived from decision-tree analysis. B: Representative 
individual examples illustrating distinct antidepressant response trajectories identified within patient clusters. Each solid line represents one 
patient’s change in HAMD-17 scores over the treatment period. The three dashed horizontal lines indicate clinically relevant cutoff points 
on the HAMD-17 scale. Red line: HAMD-17 score of 24, differentiating severe depressive states; Brown line: HAMD-17 score of 17, distinguishing 
moderate depressive severity; Green line: HAMD-17 score of 7, indicating clinical remission
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substantial heterogeneity in symptom progression even 
among patients classified similarly under single-dimen-
sion outcome measures.

Clusters of treatment response trajectories
To represent patients’ response trajectories over time, the 
patients were grouped into three clusters based on their 
HAMD-17 score change ratio over time (Fig. 3). The first 
cluster (C1 cluster) was a slow response cluster, which 
showed a continuing increase in their change ratio in the 
HAMD-17 score. We defined it as the gradual response 
group. There were 402 patients in the C1 cluster, which 

represented 41.35% of the patients. The second cluster 
(C2 cluster) was an early response cluster, which showed 
an increase in the HAMD-17 score change ratio in the 
first four weeks and stayed well for the rest of the four 
weeks. We defined it as the early response group. There 
were 449 patients in the C2 cluster, which represented 
46.19% of the patients. The third cluster (C3 cluster) 
was diverse, showing a fluctuating course of alternating 
improvement and worsening and ultimately poor treat-
ment response. We defined it as the fluctuating response 
group. There were 121 patients in the C3 cluster, which 
represented 12.56% of the patients. Table 1 summarizes 

Fig. 3 HAMD-17 score change rate trajectories and resulting cluster shape characteristics for all patients. X-axis: observation time in weeks; Y-axis: 
normalized HAMD-17 score change ratio; membership: each sample has a membership value ranging from 0 to 1, which indicates its degree 
of belonging to the cluster

Table 1 Demographic data among different treatment response clusters

Data are presented as numbers (percentages) for categorical variables and medians (interquartile range, IQR: 25th percentile, 75th percentile) for non-normally 
distributed continuous variables.
a Chi-square value based on Chi-square test.
b H statistic based on Kruskal-Wallis test.
c p-value based on Chi-square test for categorical variables.
d p-value based on Kruskal-Wallis test for continuous variables.
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the demographic data of the patients classified into three 
antidepressant response clusters. The distribution of 
antidepressants among the three clusters was assessed 
using a Chi-square test. The results indicated no signifi-
cant differences in medication use between the clusters 
(χ2 = 5.456, p = 0.204) (Supplementary Table S3). Patients 
who only had pharmacotherapy (n = 579) showed simi-
lar response trajectories and patterns (Supplementary Fig 
S3). To assess the potential impact of missing data on our 
results, we applied multiple imputation to generate five 
different datasets and conducted clustering analysis on 
each imputed dataset. The results showed that unsuper-
vised clustering consistently grouped patients into three 
clusters across all imputed datasets, indicating that the 
missing data had a relatively small impact on the clus-
tering results and did not alter the main findings of our 
study.

Differences in the family environment and social support 
among the clusters
We found significant differences in family control and 
social support but not in childhood trauma experience 
among the three clusters. The differences in family envi-
ronment factor-control between the three clusters were 
significant [1–4], C2 = 3 [1–4], C3 = 3 [1.75–5.25]; p = 
0.0489) (Fig.  4a). The control factor reflected the extent 
to which the family is organized hierarchically and the 
rigidity of family rules and procedures [33]. Patients in 
the C3 cluster had significantly higher levels of control 
compared with those in the C1 (p = 0.0096) and C2 (p = 
0.031). For social support, there were significant differ-
ences in support utility ([4–8], C2 = 5 [4–8], C3 = 5 [4–7]; 
p = 0.0339) among the three clusters (Fig.  4b). Patients 
in the C1 cluster had significantly higher levels of sup-
port utility than those in C3 (p = 0.0075). There were no 
significant differences between C1 and C2 (p = 0.17), or 
between C2 and C3 (p = 0.16) in support utility.

Differences in clinical symptoms among the clusters
There were significant differences in suicidal ideation 
among the three clusters at baseline (median [IQR]: C1 
= 2 [0–9], C2 = 3 [0–11], C3 = 7 [0–13]; p = 0.00161) and 
at week 8 (median [IQR]: C1 = 0 [0–0], C2 = 0 [0–0], C3 
= 0 [0–0]; p = 1.88e-06) (Fig.  4c, d). Patients in the C1 
cluster had significantly lower scores at baseline (C1 vs. 
C2, p = 0.029; C1 vs. C3, p = 0.00038). Patients in the 
C3 cluster had significantly higher scores than those in 
C1 cluster (p = 2.3e-06) and C2 cluster (p = 3.0e-07) at 
week 8. For SHAPS, there were significant differences in 
[10–13], C2 = 11 [9–13], C3 = 9 [5–11]; p < 2.2e-16) and 
change scores from baseline to week 8 (median [IQR]: C1 
= 5 [2–8], C2 = 5 [2–9], C3 = 1 [−1.25–4]; p = 1.85e-15) 
(Fig. 4e, f ). Patients in the C3 cluster showed significantly 

higher levels of anhedonia compared with those in the 
C1 cluster (p < 2.2e-16) and C2 cluster (p < 2.2e-16) and 
fewer change scores of anhedonia from baseline to week 
8 (C1 vs. C3, p = 5.3e-14; C2 vs. C3, p = 4.7e-14). For TAS, 
there were significant differences in total TAS scores at 
week 8 (median [IQR]: C1 = 50 [47–56], C2 = 50 [47–56], 
C3 = 55 [51.5–60]; p = 5.8e-11) and change scores from 
baseline to week 8(median [IQR]: C1 = −9 [−14– −3], C2 
= −9 [−15– −4], C3 = −4 [−11–2]; p = 6.65e-06) among 
the three clusters (Fig. 4g, h). Patients in the C3 cluster 
had a significantly higher score in TAS at week 8 (C1 vs. 
C3, p = 1.3e-09; C2 vs. C3, p = 4.8e-12) and fewer change 
scores from baseline to week 8 (C1 vs. C3, p = 5.7e-05; C2 
vs. C3, p = 6.0e-07).

Rare variance burden difference between clusters
To estimate the rare variance difference between different 
treatment response clusters, we performed rare variance 
burden tests between the C1 and C2 clusters, as well as 
between the C1 and C3 clusters. The C1 cluster was used 
as the reference. No gene was found with FDR < 0.05. 
We found 50 genes (p < 0.05) with rare variance burden 
differences between patients in the C1 and C2 clusters 
(Supplementary Table  S4), and 64 genes (p < 0.05) with 
rare variance burden differences between patients in the 
C1 and C3 clusters (Supplementary Table  S5). The top 
ten genes identified in the burden tests are presented in 
Table 2. The genes with burden differences between the 
C1 and C2 clusters represent response efficiency-related 
genes, while those with burden differences between the 
C1 and C3 clusters represent response volatility-related 
genes.

Functional enrichment of genes with different rare variants 
between clusters
To illustrate the functional information of the rare vari-
ance burden genes, we performed functional enrichment 
of the treatment response-related rare variant genes 
and found the response efficiency-related (C1 vs. C2) 
genes were enriched in neuronal-related pathways. For 
example, the neurotrophin signaling pathway (Fig.  5A). 
The response volatility-related (C1 vs. C3) genes were 
enriched in inflammatory-related pathways, for example, 
inflammatory mediator regulation of transient recep-
tor potential (TRP) channels (Fig. 5B). P-values and the 
genes involved are listed in Supplementary Table S6-7.

Discussion
Previous studies for predicting antidepressant efficacy 
have been largely unsuccessful due to the limited defini-
tion of treatment response using a single time point. In 
this study, we used longitudinal data from multi-point 
measurements and performed a cluster-based method 
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to determine treatment response patterns. These treat-
ment response clusters showed differences in clinical 
symptoms, psychosocial factors, and relevant biological 
pathways. The results of functional enrichment of rare 

variants shed light on the underlying biological pathways 
related to different patterns of responses.

Group-based trajectory methods can incorporate 
more information to capture heterogeneity in effi-
cacy that traditional approaches would overlook, and 

Fig. 4 Violin plots of clinical psychological scale scores for the three clusters of patients. ANOVA analysis and Tukey HSD test of clinical 
psychological scale scores among three clusters were conducted. Figures above each two violin plots are p-values by Tukey’s HSD test. The 
numbers 1, 2, and 3 on the X-axis represent the C1, C2, and C3 cluster, respectively. a. Family control: Distribution of the control subscale score 
from the Family Environment Scale among clusters; b. Support utility: Distribution of support utility scores among clusters; c. BSI at baseline: 
Distribution of baseline BSI scores across clusters; d. BSI at week 8: Distribution of Beck Scale for Suicide Ideation scores at week 8 among clusters. e. 
SHAPS at week 8: Distribution of Snaith-Hamilton Pleasure Scale scores at week 8; f. Change in SHAPS (week 8 - baseline): Change scores for SHAPS 
from baseline to week 8; g. TAS-20 total at week 8: Distribution of Toronto Alexithymia Scale total scores at week 8; h. Change in TAS-20 (week 8 
- baseline): Change scores for TAS-20 total scores from baseline to week 8
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improve the analysis of clinical studies [47]. A study 
using latent-class trajectory analysis provided more 
consistent predictors of antidepressant response than 
traditional endpoint analyses [48]. Our categorization 

of outcome truly reflected the situation of clinical treat-
ment, so further analysis based on the classification can 
be more advantageous in determining the components 
that influence antidepressant efficacy.

Table 2 Top ten genes in the burden tests

N_informative -The number of informative samples for each gene that contribute to the analysis. NumVar - The total number of rare variants identified in each gene. 
NumPolyVar - The number of polymorphic variants found within the gene. NonRefSite - The number of non-reference sites in the gene, indicating variations from the 
reference genome.
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The results of functional enrichment revealed some 
meaningful findings. The response efficiency-related 
(C1 vs. C2) genes were mainly concentrated in the neu-
rotrophin signaling pathway, which suggested a con-
nection with the rapid onset of antidepressant action. 
Brain-derived neurotrophic factor (BDNF), a major neu-
rotrophic factor in the central nervous system (CNS), 
exerts its neurotrophic effects mainly through the acti-
vation of tropomyosin-related kinase receptor B (TrkB) 
[49]. Increased BDNF expression and signal transduc-
tion may play a key role in the rapid activation mecha-
nism of antidepressants [50, 51]. Currently, the direct 
evidence supporting these mechanisms primarily comes 
from animal experiments. A study in rodents indicated 
that impaired processing and release of BDNF signifi-
cantly attenuate rapid antidepressant responses to treat-
ments like scopolamine [50]. From a clinical perspective, 
we strengthen the evidence that neurotrophic factors and 
their signal transduction may be involved in the mecha-
nism of the rapid onset of antidepressant action.

The enrichment analysis of response volatility-related 
genes (C1 vs. C3) revealed a connection with inflamma-
tion, particularly inflammatory mediator regulation of 
TRP channels. TRP channels are cation channels that 
influence the functional state of  Ca2+ signaling in vari-
ous immune cells and can thus modulate immune and 
inflammatory responses [52]. Elevated levels of proin-
flammatory cytokines have been observed in both the 
cerebrospinal fluid and peripheral blood of depressed 
patients, suggesting that inflammatory dysregulation may 
contribute to treatment resistance or inadequate thera-
peutic response [53]. Notably, TRP channels regulate not 
only the expression of peripheral proinflammatory genes 
but also the production of proinflammatory molecules 
in the CNS by microglia, further linking their activity to 
inflammation-related mechanisms in depression [54, 55]. 
Animal studies specifically indicate that activation of TRP 
channels such as TRPV1 and TRPA1 enhances central 
inflammation and depressive-like behaviors. Conversely, 

inhibition or genetic deletion of these TRP channels miti-
gates inflammation-induced depressive behaviors, high-
lighting their promise as novel antidepressant targets 
[56–58]. However, direct clinical validation of these pre-
clinical mechanisms remains scarce. Our findings thus 
provide additional clinical-level support for TRP chan-
nels as promising therapeutic targets in depression.

The analysis of family environment and social sup-
port among the three groups yielded noteworthy results. 
Patients in the fluctuating response group (C3) showed 
the highest control levels, implying that higher control 
levels may be detrimental to antidepressant treatment. 
Previous research has established a strong association 
between family control and depression symptoms [59]. 
However, there is currently no direct evidence dem-
onstrating that reducing family control through family 
therapy improves antidepressant treatment outcomes. 
Our findings suggest a possible relationship between high 
family control and a fluctuating response pattern, but 
further research is needed to determine the causal nature 
of this association. Therefore, investigating whether 
interventions targeting family dynamics, such as family 
therapy, could contribute to improved treatment out-
comes in MDD warrants further exploration. The result 
of the comparison of social support between the grad-
ual response group (C1) and the fluctuating group (C3) 
aligns with previous research that has found that greater 
baseline social support is linked to better antidepres-
sant treatment outcomes [60]. Clinical symptoms were 
also examined among the three groups. We discovered 
that the recovery of alexithymia was less pronounced in 
the fluctuating response group. Previous studies have 
reported that alexithymia can worsen the severity of 
symptoms and negatively affect antidepressant treat-
ment in MDD patients [39]. Psychosocial interventions 
such as psychological group therapy have been shown to 
alleviate alexithymia [61, 62]. Therefore, for patients with 
high alexithymia scores and large efficacy fluctuations, 
strengthening psychological treatment may help improve 

Fig. 5 The top ten enriched KEGG pathways for the treatment response-related rare variant genes. A: The top ten enriched KEGG pathways 
of response efficiency-related genes. B: The top ten enriched KEGG pathways of response volatility-related genes
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alexithymia and ultimately lead to better treatment 
response. In addition, patients in the fluctuating response 
group demonstrated higher suicidal ideation and less 
improvement in anhedonia, supporting a less successful 
therapy because anhedonia and suicidal ideation are core 
symptoms of depression [63].

Some limitations are worth noting. First, although our 
results are encouraging, they should be validated in an 
independent cohort with larger sample sizes. Second, this 
eight-week follow-up longitudinal study has provided 
valuable insight into the antidepressant trajectories; 
however, future studies should be expanded to include 
a longer follow-up period to examine the long-term tra-
jectories of depressive symptoms in patients with MDD 
after clinical treatment. Third, our study was a natural-
istic therapy study that included various antidepres-
sant categories. Further research using mono-therapy 
with a larger sample size would benefit the underlying 
mechanism study. Additionally, it is important to note 
that patients who dropped out of the study had signifi-
cantly higher baseline HAMD-17 scores than those who 
completed the study. This pattern of missing data sug-
gests that data were not Missing Completely at Random 
(MCAR) but were instead conditionally missing in rela-
tion to baseline depression severity. Specifically, patients 
with higher baseline HAMD-17 scores exhibited a higher 
likelihood of missing follow-up assessments, indicating a 
Missing at Random (MAR) mechanism. This association 
may introduce bias into the interpretation of the primary 
outcome, and therefore, the results should be viewed 
with caution. Future studies should take into account 
potential dropout bias and consider methods such as 
imputation to address missing data.

Conclusions
Our results suggest that social support and family control 
may affect depression treatment response. Patients exhib-
iting a fluctuating response to antidepressant treatment 
may endure more severe clinical symptoms through-
out the treatment course. We provide novel evidence 
for inflammatory mechanisms, and specifically the TRP 
pathway, as potential therapeutic targets for depression, 
as well as an association between neurotrophin signaling 
and mechanisms of rapid onset of antidepressant action.
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